Skip to main content

Working With Gulp and PM2

Gulp is one of the popular task runner tools which can be integrated and works well with various helper tools for code development. I've previously created a post about how Gulp can be interoperated with Nodemon. In this post, I try to show how it can work along with PM2. PM2 is a powerful process manager that can run on multiple platforms and support a variety of technologies.

PM2 is quite different from Nodemon. Nodemon specifically only focuses on monitoring of Node.js application. On the other hand, PM2 is a process manager with rich features for maintaining many application processes in a time, even with support for clustering mechanism. Besides, PM2 is usually implemented as a daemon program, so we will need a different approach to integrate it with Gulp.

For instance, we use Gulp to do some stuff such as linting, translating, or file copying after each code changes. After Gulp runs its main tasks, we will instruct Gulp to restart or stop the application process which is managed by PM2. Firstly, we set up the gulpfile.js file. We just need an additional gulp-run module for accessing PM2 API.

const gulp = require('gulp');
const { series, watch } = gulp;
const run = require('gulp-run');

function builtCleanerTask() { /* cleaning task */ }
function linterTask() { /* linting task */ }
function typescriptTask() { /* transpiling task */ }

function restartPM2Task() {
  return run('pm2 restart ecosystem.config.js --env development').exec();
}

function stopPM2Task() {
  return run('pm2 stop ecosystem.config.js').exec();
}

let watchingTasksList = [linterTask, typescriptTask, restartPM2Task];
let buildTasksList = [builtCleanerTask, linterTask, typescriptTask];

exports.build = series(buildTasksList);
exports.stop = stopPM2Task;
exports.watch = (done) => {
  watch(['./src/**/*.ts'], {ignoreInitial:false, delay:1000}, series(watchingTasksList));
}

On the code above, we set a "watch" task to watch changes in Typescript files then perform actions for linting and translating. After that, we call a command to restart the process in PM2. The restart command is safe to be run even we haven't initiated our application process in PM2 before. We also add a "stop" task to stop the process when we finish our code development.

In the package.json file, we add some scripts to run the Gulp tasks as follows.

{ 
  "script": {
    "build": "gulp build",
    "watch": "gulp build && gulp watch",
    "stop": "gulp stop"
  }
}

We can start the watch job by calling the npm run watch command. To monitor our application log which is run by PM2, we need to open a new terminal and run the pm2 log command. This is something different as usual when we need to use a different terminal to monitor our application because Gulp and PM2 are run separately. We need to call the npm run stop command manually to stop the application process.

If we want to stop the application process in PM2 when we stop the watch job by pressing the Control + C keys, we need to do a trick here. Gulp may have implemented an event listener to handle program termination. But, we need to intercept the Gulp process and stop the application process in PM2. We can utilize my approach as follows.

const { exec } = require('child_process');

// capture exit event
process.once('SIGINT', function() {
  console.log("caught interrupt signal");
  const pid = process.pid;

  exec('pm2 stop ecosystem.config.cjs', (err,stdout,stderr) => {
    setImmediate(() => {
      process.kill(pid, 'SIGINT');
    });
  });
});

On the code above, we utilize the process.once() method to only handle the first occurrence of the interrupt signal. We use a child process to stop the process in PM2. In the end, we don't call the process.exit() method but call the process.kill() method with the information of PID of the main process to let Gulp handle the rest of the termination process.

Comments

Popular posts from this blog

Rangkaian Sensor Infrared dengan Photo Dioda

Keunggulan photodioda dibandingkan LDR adalah photodioda lebih tidak rentan terhadap noise karena hanya menerima sinar infrared, sedangkan LDR menerima seluruh cahaya yang ada termasuk infrared. Rangkaian yang akan kita gunakan adalah seperti gambar di bawah ini. Pada saat intensitas Infrared yang diterima Photodiode besar maka tahanan Photodiode menjadi kecil, sedangkan jika intensitas Infrared yang diterima Photodiode kecil maka tahanan yang dimiliki photodiode besar. Jika  tahanan photodiode kecil  maka tegangan  V- akan kecil . Misal tahanan photodiode mengecil menjadi 10kOhm. Maka dengan teorema pembagi tegangan: V- = Rrx/(Rrx + R2) x Vcc V- = 10 / (10+10) x Vcc V- = (1/2) x 5 Volt V- = 2.5 Volt Sedangkan jika  tahanan photodiode besar  maka tegangan  V- akan besar  (mendekati nilai Vcc). Misal tahanan photodiode menjadi 150kOhm. Maka dengan teorema pembagi tegangan: V- = Rrx/(Rrx + R2) x Vcc V- = 150 / (1...

Configuring Swap Memory on Ubuntu Using Ansible

If we maintain a Linux machine with a low memory capacity while we are required to run an application with high memory consumption, enabling swap memory is an option. Ansible can be utilized as a helper tool to automate the creation of swap memory. A swap file can be allocated in the available storage of the machine. The swap file then can be assigned as a swap memory. Firstly, we should prepare the inventory file. The following snippet is an example, you must provide your own configuration. [server] 192.168.1.2 [server:vars] ansible_user=root ansible_ssh_private_key_file=~/.ssh/id_rsa Secondly, we need to prepare the task file that contains not only the tasks but also some variables and connection information. For instance, we set /swapfile  as the name of our swap file. We also set the swap memory size to 2GB and the swappiness level to 60. - hosts: server become: true vars: swap_vars: size: 2G swappiness: 60 For simplicity, we only check the...

API Gateway Using KrakenD

The increasing demands of users for high-quality web services create the need to integrate various technologies into our application. This will cause the code base to grow larger, making maintenance more difficult over time. A microservices approach offers a solution, where the application is built by combining multiple smaller services, each with a distinct function. For example, one service handles authentication, another manages business functions, another maintains file uploads, and so on. These services communicate and integrate through a common channel. On the client side, users don't need to understand how the application is built or how it functions internally. They simply send a request to a single endpoint, and processes like authentication, caching, or database querying happen seamlessly. This is where an API gateway is effective. It handles user requests and directs them to the appropriate handler. There are several tools available for building an API gateway, su...

Deliver SaaS According Twelve-Factor App

If you haven't heard of  the twelve-factor app , it gives us a recommendation or a methodology for developing SaaS or web apps structured into twelve items. The recommendation has some connections with microservice architecture and cloud-native environments which become more popular today. We can learn the details on its website . In this post, we will do a quick review of the twelve points. One Codebase Multiple Deployment We should maintain only one codebase for our application even though the application may be deployed into multiple environments like development, staging, and production. Having multiple codebases will lead to any kinds of complicated issues. Explicitly State Dependencies All the dependencies for running our application should be stated in the project itself. Many programming languages have a kind of file that maintains a list of the dependencies like package.json in Node.js. We should also be aware of the dependencies related to the pla...

Manage Kubernetes Cluster using Rancher

Recently, I sought a simpler method to deploy and maintain Kubernetes clusters across various cloud providers. The goal was to use it for development purposes with the ability to manage the infrastructure and costs effortlessly. After exploring several options, I decided to experiment with Rancher. Rancher offers a comprehensive software stack for teams implementing container technology. It tackles both the operational and security hurdles associated with managing numerous Kubernetes clusters. Additionally, it equips DevOps teams with integrated tools essential for managing containerized workloads. Rancher also offers an open-source version, allowing free deployment within one's infrastructure. The Rancher platform can be deployed either as a Docker container or within a Kubernetes cluster utilizing the K3s engine. We can read the documentation on how to install Rancher on K3s using Helm . Rancher itself enables the creation and provisioning of Kubernetes clusters and ...

Erwin Smith's Last Roar

The last moments of Commander Erwin.