CUDA (Compute Unified Device Architecture) adalah suatu skema yang dibuat oleh NVIDIA agar NVIDIA selaku GPU (Graphic Processing Unit) mampu melakukan komputasi tidak hanya untuk pengolahan grafis namun juga untuk tujuan umum. Jadi, dengan CUDA, kita dapat memanfaatkan cukup banyak processor yang dimiliki oleh NVIDIA untuk berbagai perhitungan. GPU yang ada saat ini seperti ATI pun sudah memiliki banyak processor di dalamnya. Pada ATI, skema yang mereka bangun disebut ATI Stream.
Saat ini pemrograman paralel menjadi sangat penting karena kebutuhan kemampuan komputasi komputer yang terus meningkat seperti kemampuan multitasking dan pengolahan grafis yang andal. Metode saat ini dalam peningkatan peforma komputer juga berbeda dengan masa lampau dimana peningkatan clock dari processor yang diutamakan. Peningkatan clock juga dibatasi oleh kemampuan fisik dari perangkat digital yaitu persoalan daya dan panas. Pada 2005 berbagai industri komputer mulai menawakan komputer dengan beberapa core mulai dari 2, 3, 4, 6, dst. Pada awal perkembangan GPU dengan banyak core, pemanfaatan GPU hanya dapat dilakukan dengan antarmuka seperti OpenGL dan DirectX dimana antarmuka tersebut dikhususkan hanya untuk pengolahan grafis.
Seri-seri terbaru dari NVIDIA saat ini telah mendukung CUDA tepatnya keluaran setelah tahun 2006. Untuk daftar dari seri yang mendukung CUDA dapat dilihat pada http://nvidia.com/cuda. Sebagai tahap awal dalam belajar pemrograman paralel dengan memanfaatkan CUDA sebaiknya menggunakan bahasa pemrograman C atau C++. CUDA C telah menjadi bahasa pemrograman khusus pertama yang dikembangkan oleh suatu perusahaan GPU untuk memfasilitasi general-purpose computing pada GPU. Beberapa hal yang perlu dipersiapkan dalam penggunaan CUDA C untuk membuat suatu aplikasi adalah sebagai berikut.
- CUDA-enabled graphics processor
- NVIDIA device driver
- CUDA development toolkit
- Standard C compiler
Kebutuhan seperti toolkit dan driver dapat diunduh di http://developer.nvidia.com/cuda-downloads. CUDA C menyediakan kebutuhan tersebut untuk Windows, Linux, dan Mac. Jika telah memasang CUDA toolkit pada komputer Anda maka akan ada aplikasi compiler yang dapat Anda gunakan yaitu nvcc. Selain itu, jika Anda menggunakan Windows sebaiknya Anda juga memasang Visual Studio untuk kemudahan pembuatan aplikasi dan ada program bernama cl.exe dari Visual Studio yang diperlukan dalam kompilasi.
Hal khusus dalam kode program yang menggunakan CUDA C adalah adanya kernel call. Sebagai contoh adalah cuplikan kode berikut.
#include__global__ void kernel( void ) { } int main( void ) { kernel<<<1>>>(); printf( "Hello, World!\n" ); return 0; } 1>
Penambahan variabel __global__ pada fungsi kernel() berfungsi untuk menunjukkan pada compiler bahwa program tersebut dikompilasi untuk berjalan pada device dan bukan pada host. Selanjutnya kita akan melihat contoh program lagi dimana terdapat bagian pengiriman nilai.
#include#include "book.h" __global__ void add( int a, int b, int *c ) { *c = a + b; } int main( void ) { int c; int *dev_c; HANDLE_ERROR( cudaMalloc( (void**)&dev_c, sizeof(int) ) ); add<<<1>>>( 2, 7, dev_c ); HANDLE_ERROR( cudaMemcpy( &c, dev_c, sizeof(int), cudaMemcpyDeviceToHost ) ); printf( "2 + 7 = %d\n", c ); cudaFree( dev_c ); return 0; } 1>
Variabel dev_c adalah variabel yang akan digunakan untuk menampung nilai yang akan dilewatkan dari host ke device dan setelah itu nilai tersebut akan diambil dari device dan dikirim ke host. Metode pengalokasian memori memanfaatkan fungsi cudaMalloc() yang fungsinya mirip malloc() pada C. Untuk mengambil nilai dari device memanfaakan fungsi cudaMemcpy().
Sekarang bagaimanakah paralel pada GPU? Kita lihat program penjumlahan vektor berikut ini.
#include "../common/book.h" #define N 10 __global__ void add( int *a, int *b, int *c ) { int tid = blockIdx.x; // handle the data at this index if (tid < N) { c[tid] = a[tid] + b[tid]; } } int main( void ) { int a[N], b[N], c[N]; int *dev_a, *dev_b, *dev_c; // allocate the memory on the GPU HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N * sizeof(int) ) ); HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N * sizeof(int) ) ); HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N * sizeof(int) ) ); // fill the arrays 'a' and 'b' on the CPU for (int i = 0; i < N; i++) { a[i] = -i; b[i] = i * i; } // copy the arrays 'a' and 'b' to the GPU HANDLE_ERROR( cudaMemcpy( dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice ) ); HANDLE_ERROR( cudaMemcpy( dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice ) ); add<<< N,1 >>>( dev_a, dev_b, dev_c ); // copy the array 'c' back from the GPU to the CPU HANDLE_ERROR( cudaMemcpy( c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost ) ); // display the results for (int i = 0; i < N; i++) { printf( "%d + %d = %d\n", a[i], b[i], c[i] ); } // free the memory allocated on the GPU cudaFree( dev_a ); cudaFree( dev_b ); cudaFree( dev_c ); return 0;
Program yang dapat dijadikan paralel adalah program yang digunakan untuk menghasilkan satu nilai dimana nilai keluarannya tersebut tidak dipengaruhi oleh nilai lain dari komputasi dengan fungsi yang sama. Contohnya adalah dalam program penjumlahan vektor ini. Dalam penjumlahan vektor nilai c(0) adalah penjumlahan antara a(0) dan b(0) dan tidak dipengaruhi oleh nilai c(1), c(2), dst.
Pada program ini juga terdapat bagian yang bertuliskan add<<<N,1>>>. Bagian ini menunjukkan bahwa program memanfaatkan N buah thread. Nilai N buah ini diperoleh dari:
N buah block x 1 thread per block
Untuk menentukan jumlah thread yang akan digunakan dapat diatur dengan mengubah kedua nilai tersebut. Fungsi add<<<1,N>>> akan menghasilkan penggunaan jumlah thread yang sama dengan fungsi ini add<<<N,1>>>. Jumlah block dan thread per block tentu saja terbatas dan untuk setiap device akan berbeda jumlahnya. Anda dapat melihatnya menggunakan fungsi properti dari CUDA. Program di atas juga hanya menggunakan 1 thread pada setiap block. Oleh karena itu identifikasi posisi cukup dengan mengambil posisi block yang menjalankan komputasi dengan memanggil variabel blockIdx.x.
Hal lain yang akan menjadi penting dalam pemanfaatan CUDA ada kemampuan untuk merepresentasikan array 2D atau 3D dalam array 1D. Kemampuan ini akan mempermudah kita dalam pembuatan program untuk pengalokasian memori serta pengaturan jumlah thread. Untuk belajar lebih jauh lagi tentang pemrograman paralel dengan CUDA dapat mempelajari berbagai bahan untuk belajar yang disediakan oleh NVIDIA seperti pada http://developer.nvidia.com//suggested-reading dan http://developer.nvidia.com/cuda-training.
Comments
Post a Comment